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Abstract—There has been a continuous study on
formal triangular matrix rings. In this present study
of formal triangular matrix rings few ring theoretic
characteristic properties of formal triangular matrix
rings have been studied in detail. Some definitive re-
sults are verified on these rings concerning properties
such as being respectively left Kasch, right mininjec-
tive, clean, potent or a ring of stable rank≤ n. The
concepts of a strong left Kasch ring and a strong right
mininjective ring are introduced and it is determined
when the triangular matrix rings are respectively
strong left Kasch or strong right mininjective

I. INTRODUCTION

All the rings considered will be associative rings
with identity, all the modules considered will be
unital modules. For any ring R the category of right
(resp left) R-modules will be denoted by Mod-
R(resp R-Mod). Let A and B be two given rings
and M a left B right A bimodule. The formal trian-

gular matrix ring T =

[
A 0
M B

]
has its elements

formal matrices
[
a 0
m b

]
where a ∈ A, b ∈ B

and m ∈ M with addition co-ordinate wise and
multiplication given by

[
a 0
m b

]
.

[
a′ 0
m′ b′

]
=[

aa′ 0
ma′ + bm′ bb′

]
. The present is devoted to

study of properties of Formal Triangular rings.
Specifically we characterize all maximal (resp min-
imal) one sided ideals of T , use this to characterize
the jacobson radical J(T ) and the right (resp
left) socle socleTT (resp socTT ). We determine
necessary and sufficient conditions for T to be
semi-primary, left(or right) perfect, semi local etc.

II. RING THEORETIC PROPERTIES OF T

(1) Left ideals of T are of the form I1 ⊕ I2
where
I1 <A A, I2 ≤B (M ⊕ B) and MI1 ⊆
I2; that is MI1 ⊕ 0 ⊆ I2.
(2) Right ideals of T are of the form J1 ⊕ J2
where
J2 < BB , J1 5 (A⊕M)A and J2M ⊆ J1.[5]

2. Generalities on formal triangular matrix
rings

Proposition II.1. (1) The set of maximal right
ideals of T is given by
{(I ⊕ M) ⊕ K| either I =
A and K is a maximal right ideal of B
or I is a maximal right ideal of A and K =
B}
(2) The set of minimal right ideals of T is the
union of the two sets,
{W ⊕ 0| W a simple submodule of (A ⊕
M)A} and
{0 ⊕ K| with 0 the zero submodule of (A ⊕
M)A and K a minimal right
ideal of B satisfying KM = 0}.

Proof. (1) Let W⊕K with W ≤ (A⊕M)A, K ≤
BB and KM ≤W be a maximal right ideal of T .
If K 6= B then choosing a maximal right ideal K ′

of BB such that K ≤ K ′, we see that (A⊕M)⊕K ′
is a maximal right ideal of T , but since W ⊕K is
maximal we get W ⊕ K = (A ⊕M) ⊕ K ′, then
this implies that W = A⊕M and K = K ′; that is
I = A and K is a maximal right ideal of B. On the
other hand if K = B then 0⊕KM ≤ W implies
that 0⊕BM ≤W ; that is W = I ⊕M for some
I ≤ AA. The maximality of W ⊕K implies that I
is a maximal right ideal of A. Thus any maximal
right ideal of T has to be either (A⊕M)⊕K with
K a maximal right ideal of B or (I⊕M)⊕B with
I a maximal right ideal of A.
(2) Let W ⊕K with W ≤ (A ⊕M)A, K ≤ BB

and KM ≤ W be the minimal right ideal of T .
For any V ≤ W , V ⊕ 0 is a right ideal of T ,
maximality of W ⊕K implies that either K = 0
and W is a simple submodule of (A⊕M)A or K
is a minimal right ideal of BB satisfying KM = 0.
Conversely, it is clear that W ⊕ 0 for any simple
module and 0 ⊕K for any minimal right ideal of
B with KM = 0 constitute minimal right ideal of
T .
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Corollary II.1. [1] (a) J(T ) =

[
J(A) 0
M J(B)

]
and

(b) soc(TT ) =

[
soc(AA) 0
soc(MA) soc(LB)

]
where

L = lB(M)

Proof. T = A⊕M ⊕B
( a). According to the definition
J(R) = Intersection of maximal right ideals of

R. Now maximal right ideals of T are
{I ⊕M ⊕B| I maximal right ideal of A} ∪
{A⊕M ⊕K| K maximal right ideal of B} so
J(T ) = J(A)⊕M ⊕ J(B)

=

[
J(A) 0
M J(B)

]
.

(b) According to the definition, for any ring R
soc(RR) = sum of all minimal right ideals

of R. For T =

[
A 0
M B

]
, by Prop II.1 the

minimal right ideals of T are the union of two sets
{W ⊕0|W a simple submodule of (A⊕M)A}∪
{0⊕K| K is a minimal right ideal of B satisfying
KM = 0}. Now soc(TT ) =

∑
all minimal right

ideals of T =
∑

((W ⊕ 0) + (0 ⊕ K)) with W
and K as above and KM = 0.

Since K is minimal right ideal of B such
that KM = 0 which implies that K ⊆ lB(M).
Therefore
soc(TT ) = soc(AA)⊕ soc(MA)⊕ soc(lB(M))

=

[
soc(AA) 0
soc(MA) soc(LB)

]
where L = lB(M).

Corollary II.2. (i)[
a 0
m b

]
+J(T ) (a+J(A), b+J(B)) is a ring

isomorphism of T/J(T ) with A/J(A)×B/J(B).
(ii) Idempotents mod J(T ) can be lifted in T if and
only if idempotents mod J(A) can be lifted in A
and idempotents mod J(B) can be lifted in B .

Proof. (i) Define f : T/J(T ) → (A/J(A)) ×
(B/J(B)) by

f

([
a 0
m b

]
+ J(T )

)
= (a + J(A), b + J(B))

and g : (A/J(A))× (B/J(B))→ T/J(T ) by

g(a+ J(A), b+ J(B)) =

[
a 0
m b

]
.

Now f

([
a 0
m b

]
+ J(T )

)
= (J(A), J(B))

this implies that
(a + J(A), b + J(B)) = (J(A), J(B)) so a ∈

J(A), b ∈ J(B)

and
[
a 0
m b

]
∈
[
J(A) 0
M J(B)

]
= J(T ). So

f is injective.
For any (a + J(A), b + J(B)) there exists[
a 0
0 b

]
∈ T/J(T ) such that f

([
a 0
m b

])
=

(A+ J(A), b+ J(B)), and so f is surjective.
(ii) [Lifting Idempotents: If I is a non empty
subset of R then an idempotent of R/I or an
idempotent modulo I is an element x ∈ R such that
x2 − x ∈ I . Such an element is said to be lifted
provided that there exists an idempotent y ∈ R
such that y − x ∈ I and we say that x has been
lifted to y.]

Let
[
a 0
m b

]
∈ T be an idempotent mod

J(T ) which can be lifted in T . This im-

plies that
([

a 0
m b

])2

−
[
a 0
m b

]
=[

a2 − a 0
ma+ bm−m b2 − b

]
which belongs to J(T ); therefore a2 − a ∈

J(A), b2 − b ∈ J(B); that is a is an idempotent
mod J(A) and b is an idempotent mod J(B). And[
a 0
m b

]
can be lifted in T implies that there

exists
[
a′ 0
m′ b′

]
∈ T such that

[
a 0
m b

]
−[

a′ 0
m′ b′

]
=

[
a− a′ 0
m−m′ b− b′

]
∈ J(T ) ; that

is a− a′ ∈ J(A) and b− b′ ∈ J(B), so a is lifted
to a′ and b is lifted to b′.
Conversely, if a and b are idempotents mod J(A)
and J(B) which can be lifted in A and B re-

spectively to a′ and b′. Then
[
a 0
m b

]
is an

idempotent mod J(T ) for any m and it can be

lifted in T to
[
a′ 0
0 b′

]
.

Corollary II.3. T is semilocal if and only if A and
B are semilocal. [12]

Proof. Suppose T is semilocal. This implies that
every ideal of T/J(T ) is a direct summand of
T/J(T ). Now by Corollary II.2(i) we have
T/J(T ) ∼= (A/J(A))×(B/J(B)) ∼= (A/J(A))⊕
(B/J(B))

So every ideal of (A/J(A)) × (B/J(B)) is
a direct summand of T/J(T ). The ideals of
(A/J(A))×(B/J(B)) are of the form Ī×J̄ where
I and J are ideals of A and B respectively. So
each Ī × J̄ is a direct summand of T/J(T ); that
is Ī is a direct summand of T/J(T ) and J̄ is a
direct summand of T/J(T ) hence Ī is a direct
summand of A/J(A) and J̄ is a direct summand of
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B/J(B). Therefore we get A/J(A) and B/J(B)
are semsimple and so A and B are semilocal. Proof
for the converse is on the similar lines.

Corollary II.4. T is semi-perfect if and only if A
and B are semi-perfect.

Proof. By Corollary II.3 we get T/J(T ) is semilo-
cal if and only if A/J(A) and B/J(B) are
semilocal. Also from corollary II.2(ii) we get that
idempotents mod J(T ) can be lifted in T if and
only if idempotents mod J(A) can be lifted in A
and idempotents mod J(B) can be lifted in B. So
T is semi-perfect if and only if A and B are semi-
perfect.

Corollary II.5. T is right (resp left) perfect if and
only if A and B are right(resp left) perfect.

Proof. Proof is clear by Corollary II.3.

Corollary II.6. T is semi-primary if and only if A
and B are semi-primary.

Proof. Assume that A and B are semi-primary.
Because of corollary II.3, to show that T is semi-
primary we need only to show that J(T ) is nilpo-
tent. Since J(A) and J(B) are nilpotent we can
find an integer k ≥ 1 with (J(A))k = 0 and
(J(B))k = 0.

If Ī1 =

[
J(A) 0
M 0

]
and Ī2 =

[
0 0
M J(B)

]
,

then Ī1 and Ī2 are two sided ideals of T . Now since

Ī2
k+1

=

[
(J(A))k+1 0
M(J(A))k 0

]
, It is easy to see that

Ī1
k+1

= 0 = Ī2
k+1

. From J(T ) = Ī1 + Ī2, we
immediately conclude that J(T ) is nilpotent.

Now to prove the converse; again because of
Corollary II.3 we have only to show that J(T ) is
nilpotent implies that J(A) and J(B) are nilpotent.
J(T )k =[

(J(A))k 0
M(J(A))k−1 + (J(B))k−1M (J(B))k

]
=

[
0 0
0 0

]
.

We will now give an exact description of
the principal right ideal uT of T where u =[
a 0
m b

]
and obtain necessary and sufficient con-

ditions for uT to be a minimal right ideal of T.

Lemma II.1. Let u =

[
a 0
m b

]
∈ T. Writing[

a
m

]
A for

{
[
aλ 0
mλ 0

]
| λ ∈ A}, we have uT =

[
a
m

]
A+[

0 0
bM bB

]
.

Proof. For any
[
λ 0
n µ

]
∈ T ; we have[

a 0
m b

] [
λ 0
n µ

]
=

[
aλ 0

mλ+ bn bµ

]
=

[
aλ 0
mλ 0

]
+

[
0 0
bn bµ

]
.

Hence uT ⊆
[
a
m

]
A+

[
0 0
bM bB

]
.

From[
a 0
m b

] [
λ 0
0 0

]
=

[
aλ 0
mλ 0

]
[
a 0
m b

] [
0 0
n 0

]
=

[
0 0
bn 0

]
and

[
a 0
m b

] [
0 0
0 µ

]
=

[
0 0
0 bµ

]
; we see

that
[
a
m

]
A ⊆ uT,[

0 0
bM 0

]
⊆ uT and

[
0 0
0 bB

]
⊆ uT .

Corollary II.7. Let u =

[
a 0
m b

]
∈ T . Then uT

is a minimal right ideal of T if and only if one of
the following is true.
(1) b = 0 and (a,m) generates a simple submodule
of (A⊕M)A.
(2) a = 0, m = 0, bB is a minimal right ideal B
and bM = 0.

Proof. From (2) of Proposition II.1 and Lemma
II.1 we see that uT is minimal right ideal of T if
and only if one of the following is valid.

(i)
[
a
m

]
A+

[
0 0
bM bB

]
= W ⊕ 0 where W

is a simple submodule of (A⊕M)A.

(ii)
[
a
m

]
A +

[
0 0
bM bB

]
= 0⊕K where K

is a minimal right ideal of B satisfying KM = 0.
Now (i) is valid if and only if b = 0 and (a,m)

generates a simple submodule of (A ⊕M)A and
(ii) is valid if and only if a = 0 , m = 0 and bB
is a minimal right ideal of B and bM = 0.

We take the analogue of Proposition II.1 is valid
for left ideals of T. We state it without proof.

Proposition II.2. (1) The set of maximal left
ideals of T is given by
{I ⊕ (M ⊕ K)| either I =
A and K is a maximal left ideal of B
or I is a maximal left ideal of A and K = B}.
(2) The set of minimal left ideals of T is the union
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of the two sets
{0⊕ V | V a simple submodule of B(M ⊕B)} ∪
{I ⊕ 0| with 0 the zero submodule of B(M ⊕
B) and I a minimal
left ideal of A satisfying MI = 0}.

In particular, we see from (2) above that

Soc(TT ) =

[
Soc(AH) 0
Soc(BM) Soc(BB)

]
, where

H = rA(M).

III. LEFT KASCH NATURE, RIGHT
MININJECTIVITY

3. Left (right) Kasch and strong left (strong
right) Kasch rings.

Definition III.1. A ring R is said to be left Kasch
if rR(I) 6= 0 for every maximal left ideal I of R.

Definition III.2. R will be called a strong left
Kasch ring if rR(I) is a minimal right ideal of
R for every maximal left ideal I of R.

This section is devoted to studying conditions
under which the triangular matrix ring T =[
A 0
M B

]
is left Kasch (resp strong left Kasch).

rR(I) = {r ∈ R| a.r = 0 for all a ∈ I}.

Lemma III.1. (1) Let I be any left ideal of A.
For the left ideal

Ĩ =

[
I 0
M B

]
we have rT (Ĩ) =[

rA(I) ∩ rA(M) 0
0 0

]
.

In particular rT (Ĩ) is a minimal left ideal of T
if and only if
rA(I) ∩ rA(M) is a minimal right ideal of A.
(2) Let K be any left ideal of B. For the left

ideal K̃ =

[
A 0
M K

]
of T we have rT (K̃) =[

0 0
rM (K) rB(K)

]
. In this case rT (K̃) is a

minimal right ideal of T if and only if one of the
following is valid: Either
(a) rB(K) = 0 and rM (K) is a simple submodule
of MA. Or
(b) rB(K) is a minimal right ideal of B and
rB(K)M = 0 = rM (K).

Proof. (1) rT (Ĩ) = {t ∈ T | Ĩ .t = 0}.
Let t =

[
a1 0
m1 b1

]
. Now Ĩ .t = 0 implies

that
[

I 0
M B

] [
a1 0
m1 b1

]
= 0; that is[

Ia1 0
Ma1 +Bm1 Bb1

]
= 0. Now Ia1 = 0

implies that aa1 = 0 for all a ∈ I and so

a1 ∈ rA(I) also Bb1 = 0 gives us bb1 = 0 for
all b ∈ B so b1 = 0. Since Ma1 is a simple
module and Ma1 + Bm1 ⊆ M ⊆ M ⊕ B,
so Ma1 + Bm1 = 0 implies that
Ma1 = 0 and Bm1 = 0. Now Ma1 = 0
means a1 ∈ rA(M) and Bm1 = 0 means
bm1 = 0 for all b ∈ B proving m1 = 0. Therefore

t =

[
a1 0
0 0

]
where a1 ∈ rA(I) ∩ rA(M) and

hence rT (Ĩ) =

[
rA(I) ∩ rA(M) 0

0 0

]
.

Also rT (Ĩ) is a minimal right ideal of T if and
only if rA(I)∩ rA(M) is minimal right deal of A.
(2) rT (K̃) = {t ∈ T |K̃t = 0}. Let

t =

[
a1 0
m1 b1

]
∈ rT (K̃), then K̃.t =

0; that is
[
A 0
M K

] [
a1 0
m1 b1

]
= 0, so[

Aa1 0
Ma1 +Km1 Kb1

]
= 0. Thus we have

Aa1 = 0 and Kb1 = 0 which gives a1 =
0 and b1 ∈ rB(K). And also Ma1 + Km1 =
0 gives Km1 = 0; that is m1 ∈ rM (K). There-

fore t =

[
0 0
m1 b1

]
where m1 ∈ rM (K) and

b1 ∈ rB(K). So rT (K̃) =

[
0 0

rM (K) rB(K)

]
.

rT (K̃) is a minimal right ideal of T if either
rB(K) = 0 and rM (K) is a simple submodule
of MA or rB(K) is a minimal right ideal of B
satisfying rB(K)M = 0 = rM (K) by using (2) of
Prop II.1

Theorem III.1. (i) If T is left Kasch, so is A.
Further rA(I) ∩ rA(M) 6= 0 for every maximal
left ideal I of A.
(ii) Suppose T is left Kasch and soc(BM) = 0.
Then B is left Kasch.
(iii) Let A and B be left Kasch. Further assume
that rA(I) ∩ rA(M) 6= 0 for every maximal left
ideal I of A. Then T is left Kasch.

Proof. (i) Assume T is left Kasch. Let I be

any maximal ideal of A, then Ĩ =

[
I 0
M B

]
is a maximal left ideal of T and so rT (Ĩ) 6=
0. By using Lemma III.1 we get rT (Ĩ) =[
rA(I) ∩ rA(M) 0

0 0

]
6= 0 and hence we get

rA(I) ∩ rA(M) 6= 0 for every maximal left ideal
I of A.
(ii) Assume that T is left Kasch and let K be any

maximal left ideal of B. Then K̃ =

[
A 0
M K

]
is a maximal left ideal of T. Hence rT (K̃) =
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[
0 0

rM (K) rB(K)

]
6= 0. Since rM (K) ⊂

Soc(BM) we get rM (K) = 0. Hence rB(K) 6= 0,
showing that B is left Kasch.
(iii) Assume that A and B are left Kasch and that
rA(I) ∩ rA(M) 6= 0 for every maximal left ideal
I of A. For any maximal left ideal Ĩ of T of

the form Ĩ =

[
I 0
M B

]
, the equality rT (Ĩ) =[

rA(I) ∩ rA(M) 0
0 0

]
shows that rT (Ĩ) 6= 0.

For the maximal left ideal K̃ of the form K̃ =[
A 0
M K

]
with K any maximal left ideal of

B the equality rT (K̃) =

[
0 0

rM (K) rB(K)

]
shows that rT (K̃) 6= 0 since rB(K) 6= 0. This
proves that T is left Kasch.

We remark that in case rA(M) is an essential
right ideal of A, from (iii) above we see that A,B
left Kasch implies that T is left Kasch.

Theorem III.2. (i) Assume that A and B are
strong left Kasch and that rA(M) is an essential
right ideal of A. Then T is strong left Kasch
provided rM (K) = rB(K)M = 0 for all maximal
left ideals K of B.
(ii) Let B be left Kasch. Assume that either
Soc(AA) ⊆ rA(M) or that rA(M) is essential
in AA and rA(I) ⊆ Soc(AA) for every maximal
left ideal I of A. Then T strong left Kasch implies
that A and B are strong left Kasch and further
rM (K) = rB(K)M = 0 for all maximal left ideals
K of B.

Proof. (i) Assume that A,B are strong left Kasch,
rA(M) is an essential right ideal of A and
rM (K) = rB(K)M = 0 for all maximal left ideals
K of B. When I is a maximal left ideal of A,
since A is strong left Kasch rA(I) is a minimal
right ideal of A. Since rA(M) is essential right
ideal of A we get rA(M) ∩ rA(I) = rA(I). From
Lemma III.1 we see that rT (Ĩ) is a minimal right

ideal of T where Ĩ =

[
I 0
M B

]
. Also, when

K is a maximal left ideal of B, from the strong
left Kasch nature of B; we see that rB(K) is a
minimal right ideal of B. From (2) of Lemma III.1

we have rT (K̃) =

[
0 0

rM (K) rB(K)

]
, where

K̃ =

[
A 0
M K

]
. The assumption rM (K) =

rB(K)M = 0 shows that rT (K̃) is a minimal right
ideal of T. Since ideals of the form Ĩ or K̃ give

all the maximal left ideals of T, we see that T is
strong left Kasch.
(ii) Let I be any maximal left ideal of A. Then
Ĩ is a maximal left ideal of T and rT (Ĩ) =[
rA(I) ∩ rA(M) 0

0 0

]
, since T is strong left

Kasch rA(M) ∩ rA(I) is a minimal right ideal
of A. We have Soc(AA) ⊆ rA(M) and rA(I) ⊆
Soc(AA) we get rA(I) ∩ rA(M) = rA(I). On
the other hand if rA(M) is essential in AA and
rA(I) ⊆ Soc(AA) so we get rA(I) ∩ rA(M) =
rA(I), thus rA(I) is a minimal right ideal of A.
This shows that A is a strong left Kasch ring.

Let K be any maximal left ideal of B. The as-
sumption that B is left kasch implies that rB(K) 6=
0. Since K̃ =

[
A 0
M K

]
is a maximal left ideal

of T and T is strong left Kasch, it follows that

rT (K̃) =

[
0 0

rM (K) rB(K)

]
is a minimal right

ideal of T. Since rB(K) 6= 0 from Prop II.1 we
see that rB(K) is a minimal right ideal of B and
rM (K) = 0 = rB(K)M.

There is an obvious definition of a right (resp
strong right) Kasch ring. A ring R is right (resp
strong right ) Kasch ring if lR(I) 6= 0 (resp lR(I)
is a minimal left ideal of R) for every maximal
right ideal of R. We state the following analogues
for Theorems III.1 and III.2.

Theorem III.3. (i) If T is right Kasch so is B.
Further lB(K) ∩ lB(M) 6= 0 for every maximal
right ideal K of B.
(ii) Suppose that T is right Kasch and Soc(MA) =
0. Then A is right Kasch.
(iii) Let A and B be right Kasch. Further assume
that lB(K) ∩ lB(M) 6= 0 for every maximal right
ideal K of B. Then T is right Kasch.

Proof. (i) let K be any maximal right ideal of B

then K̃ =

[
A 0
M K

]
is a maximal right ideal of

T. Since T is right kasch we have
lT (K̃) 6= 0. Now to find lT (K̃), let

t =

[
a1 0
m1 b1

]
∈ lT (K̃). This

implies that
[
a1 0
m1 b1

] [
A 0
M K

]
=[

a1A 0
m1A+ b1M b1K

]
= 0. Now a1A = 0

implies a1 = 0 , b1K = 0 implies
b1 ∈ lB(K) and m1A + b1M = 0 implies
that m1A = 0 and b1M = 0. So m1A = 0
gives m1 = 0 and b1M = 0 gives b1 ∈ lB(M).
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Therefore lT (K̃) =

[
0 0
0 lB(K) ∩ lB(M)

]
.

If T is right Kasch then lT (K̃) 6= 0 so
lB(K)∩ lB(M) 6= 0 for every maximal right ideal
K̃ and so lB(K) 6= 0. Thus B is right Kasch.
(ii) Let I be any maximal right ideal of A, then

Ĩ =

[
I 0
M B

]
is a maximal right ideal of T.

Now lT (Ĩ) =

[
lA(I) 0
lM (I) 0

]
. Since T is right

Kasch lT (Ĩ) 6= 0, but we have lM (I) ⊂ Soc(MA)
so we get lM (I) = 0 and so lA(I) 6= 0 for every
maximal right ideal of A. Thus A is right Kasch.

(iii) Let Ĩ =

[
I 0
M B

]
be any maximal right

ideal of T. Now
lT (Ĩ) =

[
lA(I) 0
lM (I) 0

]
. Since A is right Kasch

lA(I) 6= 0 and so

lT (Ĩ) 6= 0. Also if K̃ =

[
A 0
M K

]
is a maximal

right ideal of T then

lT (K̃) =

[
0 0
0 lB(K) ∩ lB(M)

]
, which implies

that lT (K̃) 6= 0 and so T is right Kasch.

Theorem III.4. (i) Assume that A and B are
strong right Kasch and that lB(M) is an essential
left ideal of B. Then T is strong right Kasch
provided lM (I) = MlA(I) = 0 for all maximal
right ideals I of A.
(ii) Let A be right Kasch. Assume that either
Soc(BB) ⊆ lB(M) or that lB(M) is essential in
BB and lB(K) ⊆ Soc(BB) for every maximal
right ideal K of B. Then T is strong right Kasch
implies that A and B are strong right Kasch and
further lM (I) = MlA(I) = 0 for all maximal right
ideals I of A.

Proof. (i) Assume A,B strong right Kasch and
lB(M) is an essential right ideal of B and lM (I) =
MlA(I) = 0 for all maximal right ideals I of A.

Let Ĩ =

[
I 0
M B

]
be a maximal right ideal of

T then lT (Ĩ) =

[
lA(I) 0
lM (I) 0

]
. Since A is strong

right Kasch lA(I) is minimal left ideal of A and
given that lM (I) = MlA(I) = 0, so by using Prop
II.2 we get that lT (Ĩ) is minimal left ideal of T.

Also if K̃ =

[
A 0
M K

]
is a maximal right ideal

of T then lT (K̃) =

[
0 0
0 lB(K) ∩ lB(M)

]
.

Since B is strong right Kasch lB(K) is a minimal
left ideal of B, also since lB(M) is essential left
ideal of B we have lB(M)∩ lB(K) = lB(K) and

so lB(K)∩ lB(M) is a minimal left ideal of B and
lT (K̃) is minimal left ideal of T showing that T
is strong right Kasch.
(ii) Let K be any maximal right ideal of B, then

K̃ =

[
A 0
M K

]
is a maximal right ideal of

T. Now lT (K̃) =

[
0 0
0 lB(K) ∩ lB(M)

]
, since

T is strong right Kasch lT (K̃) is a minimal left
ideal of T ; that is lB(K) ∩ lB(M) is minimal
left ideal of B. We have lB(K) ⊆ Soc(BB)
since K is maximal right ideal of B. In case
Soc(BB) ⊆ lB(M) we get lB(K) ∩ lB(M) =
lB(K). On the other hand if lB(M) is essential
in BB we get lB(K) ⊆ Soc(BB) ⊆ lB(M) and
so lB(M) ∩ lB(K) = lB(K). Thus lB(K) is a
minimal left ideal of B showing that B is strong
right Kasch.

Now let Ĩ =

[
I 0
M B

]
be a maximal right

ideal of T then
lT (Ĩ) =

[
lA(I) 0
lM (I) 0

]
. Since T is strong right

Kasch lT (Ĩ) is minimal left ideal of T. Also since
A is right Kasch lA(I) 6= 0 and lT (Ĩ) is minimal
left ideal of T implies from Prop II.2 that lA(I) is
minimal right ideal of A and
lM (I) = MlA(I) = 0 for all maximal right ideals
I of A.

4. Right mininjective and strong right
mininjective rings

A ring R is said to be right mininjective if
and only if any right R-homomorphism f : I → R
of simple right ideal I of R into R extends
to a homomorphism g : R → R in Mod-R.
Equivalently any such f is of the form f(x) = rx
for all x ∈ I for some fixed r ∈ R. Clearly any
right injective ring is right mininjective.[7]

If R is a ring, a right module MR is called
mininjective if for each right ideal K of R,
every R-morphism γ : K → M extends to R.
Equivalently if γ = m. is left multiplication by
some element of M. Mininjective left modules are
defined similarly. Clearly every injective module
is mininjective. [Let Q be an R-module. (Baer’s
Criterion) The module Q is injective if and
only if for every left ideal I of R any R-module
homomorphism g : I → Q can be extended to
an R-module homomorphism G : R → Q.] Our
interest is in the right mininjective rings that is
the rings R for which RR is mininjective.
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Lemma III.2. The following conditions are equiv-
alent for a ring R:
(1) R is right mininjective.
(2) If kR is simple, k ∈ R, then lr(k) = Rk.
(3) If kR is simple and r(k) ⊆ r(a); k, a ∈ R,
then Ra ⊆ Rk.
(4) If kR is simple and γ : kR → R is R-linear,
then γ(k) ∈ Rk.
Where r(k) = {b ∈ R| kb = 0} and lr(k) = {a ∈
R| ab = 0; ∀ b ∈ r(k)}

Proof. Given (1), Let 0 6= a ∈ lr(k). Then γ :
kR → R is well defined by kr 7→ ar. Since R
is right mininjective we get γ = c. where c ∈ R
and γ extends to homomorphism γ′ : R→ R then
a = ck, thus lr(k) = Rk. Other implications are
routine verifications.

Duality considerations:
If MR is a right R-module, define the dual of M as
Md = HomR(M,RR). This is a left R-module,
where, if r ∈ R and λ ∈ Md, the map rλ ∈ Md

is defined by (rλ)(m) = rλ(m) for all m ∈M.

Lemma III.3. If M = mR is a principal module
and T = r(m), then
Md ∼= l(T ) = lr(m).

Proof. Let b ∈ l(T ), then the map λb : M → R is
well defined by
λb(mr) = br. Then b 7→ λb is an isomorphism
l(T )→Md of left R-modules.

[If λb1 = λb2 means that λb1(m) = λb2(m);
that is b1 = b2 and so we get injectivity. Also if
λ ∈ Md, λ : MR → R such that λ(m) = a, then
λ(mr) = ar. Now λ(m.r(m)) = 0 = a.r(m) so
a ∈ lr(m) and we get surjectivity.]

Proposition III.1. The following are equivalent for
a ring R
(1) R is right mininjective.
(2) Md is simple or zero for all simple right R-
modules M .
(3) l(T ) is simple or zero for all maximal right
ideals T of R.

Proof. (1) ⇒ (2): Let γ, δ ∈ Md, where MR

is simple and assume that γ 6= 0 then we have
δoγ−1 : γ(M) → R, so since MR is simple;
γ(M) is simple right ideal of R. Since R is right
mininjective we have δoγ−1 = a. for some a ∈ R.
So δ = aγ in Md and so Md is simple.
(2) ⇒ (3): If T is maximal right ideal of R
then (R/T )R is simple. Let M = (R/T )R =
(m) = mR then T = r(m), by previous Lemma
Md ∼= l(T ) and so l(T ) is either simple or zero

for all maximal right ideals T of R.
(3) ⇒ (1): Given l(T ) is simple or zero for all
maximal right ideals T of R. To show that R is
right mininjective: Let γ : kR → R be R-linear,
where kR is minimal right ideal of R and let
i : kR → R be the inclusion map. If T = r(k)
then r(k) is a maximal right ideal of R so l(T ) is
simple or zero. By Lemma III.3 l(T ) = Kd where
K = kR, so Kd is simple. Thus γ = ci in Kd

for some c ∈ R. So γ = c. proving that R is right
mininjective.

In this section we study triangular matrix rings

T =

[
A 0
M B

]
which are right mininjective.

rA(a) = {a′ ∈ A| aa′ = 0}, lMrA(a) = {n ∈
M | na′ = 0; ∀ a′ ∈ rA(a)},
lB(M) = {b ∈ B| bM = 0}, rB(K) = {b ∈
B| Kb = 0}.

Theorem III.5. Consider the following conditions
(1),(2),(3)and (4).
(1) A and B are right mininjective and for a ∈
A,m ∈M with rA(a)
and rA(m) maximal right ideals of A we have
lM (rA(a)) ⊆Ma,
lArA(m) = 0 and lMrA(m) ⊆ Bm.
(2) T is right mininjective.
(3) lB(M) is an essential left ideal of B and
lB(K) ⊆ Soc(BB) for
every maximal right ideal K of B.
(4) lB(M) is an essential right ideal of B and
lB(J(B)) = Soc(BB).
Then we have following implications :(1) ⇒ (2),
(2) and (3) ⇒ (1),
(2) and (4)⇒ (1).

Proof. (1) ⇒ (2): In view of Lemma III.2[9], it
suffices to show that for any minimal right ideal
uT of T the equality lr(u) = Tu holds. Since
u.r(u) = 0 we always have u ∈ lr(u), hence Tu ⊆
lr(u). Therefore it suffices to show that lr(u) ⊆
Tu.

Since uT is minimal right ideal of T , from
Corollary II.7 we see that one of the following is
valid:
(i) u =

[
a 0
m 0

]
with (a,m)A a simple submod-

ule of (A⊕M)A or

(ii) u =

[
0 0
0 b

]
with bM = 0 and bB is minimal

right ideal of B.
Suppose (i) holds, to find r(u): Let[
a1 0
m1 b1

]
∈ r(u), so
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[
a 0
m 0

] [
a1 0
m1 b1

]
= 0 which

implies
[
aa1 0
ma1 0

]
=

[
0 0
0 0

]
this

gives us aa1 = 0,ma1 = 0; that is
a1 ∈ rA(a) ∩ rA(m) and m1, b1 can be
anything, writing I = rA(a) ∩ rA(m) we have

r(u) =

[
I 0
M B

]
.

Now to find lr(u):Let
[
a1 0
m1 b1

]
∈ lr(u). So[

a1 0
m1 b1

] [
I 0
M B

]
=[

a1I 0
m1I + b1M b1B

]
=

[
0 0
0 0

]
, this

gives
a1 ∈ lA(I), b1 = 0, m1I + b1M = 0; that is
m1 ∈ lM (I) . Therefore

lr(u) =

[
lA(I) 0
lM (I) 0

]
and Tu ={[

λa 0
na+ µm 0

]
|λ ∈ A,n ∈M,µ ∈ B

}
.

Since (a,m)A ∼= A/rA(a,m) ∼= R/I is simple so
I must be maximal ideal of A. So rA(a)∩ rA(m)
is maximal and hence exactly one of the following
is valid.
(α) I = rA(a) and m = 0
(β) I = rA(m) and a = 0
(γ) I = rA(a) = rA(m).

If (α) holds then lr(u) =

[
lA(rA(a)) 0
lM (rA(a)) 0

]
and Tu =

[
Aa 0
Ma 0

]
. Since A is right

mininjective, we get lA(rA(a)) ⊆ Aa and given
lM (rA(a)) ⊆Ma so we get lr(u) ⊆ Tu.

If (β) holds then lr(u) =

[
lArA(m) 0
lMrA(m) 0

]
and

Tu =

[
0 0
Bm 0

]
, now given that lArA(m) = 0

and lMrA(m) ⊆ Bm so lr(u) ⊆ Tu.

If (γ) holds then lr(u) =

[
lArA(a) 0
lMrA(m) 0

]
and Tu =

[
Aa 0

Ma+Bm 0

]
, since A is

right mininjective lArA(a) ⊆ Aa and given that
lMrA(m) ⊆ Bm we get lr(u) ⊆ Tu.

In case if (ii) is valid u =

[
0 0
0 b

]
with

bM = 0 , bB is minimal right ideal of B. To find

lr(u): Let
[
a1 0
m1 b1

]
∈ r(u), now[

0 0
0 b

] [
a1 0
m1 b1

]
=

[
0 0
bm1 bb1

]
= 0

which gives bm1 = 0, bb1 = 0;
that is b1 ∈ rB(b). Therefore r(u) =

[
A 0
M rB(b)

]
. Now let

[
a1 0
m1 b1

]
∈ lr(u)

so
[
a1 0
m1 b1

] [
A 0
M rB(b)

]
=[

a1A 0
m1a+ b1M b1rB(b)

]
=

[
0 0
0 0

]
gives us

a1 = 0 , b1 ∈ lB(rB(b)) and m1A + b1M = 0
gives m1 = 0, b1M = 0; that is b1 ∈ lB(M) and

so lr(u) =

[
0 0
0 lB(M) ∩ lB(rB(b))

]
and

Tu =

[
0 0
0 Bb

]
. Since B is right mininjective

lB(rB(b)) ⊆ Bb hence
lr(u) ⊆ Tu.
(2) and (3) ⇒ (1) Let a ∈ A satisfy the condition

that aA is minimal ideal of A. Then u =

[
a 0
0 0

]
generates a minimal right ideal of T ; because
(a, 0)A is simple submodule of (A⊕M)A. Since
T is right mininjective we get lr(u) ⊆ Tu. Now

to find lr(u): Let
[
a1 0
m1 b1

]
∈ r(u), then[

a 0
0 0

] [
a1 0
m1 b1

]
=

[
aa1 0
0 0

]
=[

0 0
0 0

]
gives us a1 ∈ rA(a), m1 ∈M, b1 ∈ B,

therefore r(u) =

[
rA(a) 0
M B

]
. Now let[

a1 0
m1 b1

]
∈ lr(u) so[

a1 0
m1 b1

] [
rA(a) 0
M B

]
=[

a1rA(a) 0
m1rA(a) + b1M b1B

]
=

[
0 0
0 0

]
gives us a1 ∈ lArA(a) , b1 =

0 and m1 ∈ lMrA(a). Therefore

lr(u) =

[
lArA(a) 0
lMrA(a) 0

]
, u =[

a 0
0 0

]
and Tu =

[
Aa 0
Ma 0

]
. Since

lr(u) ⊆ Tu we get lArA(a) ⊆ Aa and
lMrA(a) ⊆ Ma. Since aA is minimal ⇔ rA(a)
is maximal right ideal of A, we see that
lMrA(a) ⊆ Ma whenever rA(a) is a maximal
right ideal of A. From lArA(a) ⊆ Aa we conclude
that A is right mininjective.

Now let m ∈ M satisfy the condition that
rA(m) is maximal right ideal of A. Then
(0,m)A ∼= A/rA(m) is simple submodule of

(A ⊕M)A. Hence if v =

[
0 0
m 0

]
, then vT is

a minimal right ideal of T hence lr(v) ⊆ Tv.

Now to find lr(v): Let
[
a1 0
m1 b1

]
∈ r(v) then
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[
0 0
m 0

] [
a1 0
m1 b1

]
=

[
0 0

ma1 0

]
=[

0 0
0 0

]
gives a1 ∈ rA(m). Thus

r(v) =

[
rA(m) 0
M B

]
.

To find lr(v), let
[
a1 0
m1 b1

]
∈ lr(v) then[

a1 0
m1 b1

] [
rA(m) 0
M B

]
=[

a1rA(m) 0
m1rA(m) + b1M b1B

]
=

[
0 0
0 0

]
gives
a1 ∈ lArA(m), b1 = 0, m1 ∈ lMrA(m).

Therefore lr(v) =

[
lArA(m) 0
lMrA(m) 0

]
,

v =

[
0 0
m 0

]
, T v =

[
0 0
Bm 0

]
. Since

T is right mininjective lr(v) ⊆ Tv; that is
lArA(m) = 0 , lMrA(m) ⊆ Bm.
Now it remains to show that B is right
mininjective. From Proposition III.1 [9] it
suffices to show that lB(K) is simple or zero for
all maximal right ideals K of B. Let K be any

maximal right ideal of B then K̃ =

[
A 0
M K

]
is a maximal right ideal of T . Since T is right
mininjective lT (K̃) is simple or zero. To find

lT (K̃):Let
[
a1 0
m1 b1

]
∈ lT (K̃), then[

a1 0
m1 b1

] [
A 0
M K

]
=[

a1A 0
m1A+ b1M b1K

]
=

[
0 0
0 0

]
gives

a1 = 0, b1K = 0 gives b1 ∈ lB(K) , m1A = 0
gives m1 = 0 , b1M = 0 gives b1 ∈ lB(M).

Therefore lT (K̃) =

[
0 0
0 lB(M) ∩ lB(K)

]
,

so if lT (K̃) is simple or zero implies that
lB(M) ∩ lB(K) is minimal right ideal of
B. Since lB(M) is essential left ideal and
lB(K) ⊆ Soc(BB) so lB(K) ∩ lB(M) = lB(K),
hence lB(K) is either simple or zero for all
maximal ideals K of B showing that B is right
mininjective.
(2) and (4) ⇒ (1) We need only to prove that
(2) and (4) imply right mininjectivity of B. The
other statements in (1) follow as in proof of (2)
and (3) ⇒ (1). Let b ∈ B with bB simple. Since
lB(M) is an essential right ideal of B we get
bB ⊆ Soc(BB) ⊆ lB(M).

u =

[
0 0
0 b

]
then uT =

[
0 0
bM bB

]
is min-

imal right ideal of T . By the right mininjectivity
of T we get lr(u) = Tu. Now to find lr(u):

u =

[
0 0
0 b

]
, to find r(u); let

[
a1 0
m1 b1

]
∈

r(u) then[
0 0
0 b

] [
a1 0
m1 b1

]
=

[
0 0
0 0

]
implies that

bm1 = 0 and bb1 = 0. Now bm1 = 0 gives
m1 ∈ M since bM = 0 and bb1 = 0 gives

b1 ∈ rB(b), therefore r(u) =

[
A 0
M rB(b)

]
.

Now to find lr(u): Let
[
a1 0
m1 b1

]
∈ lr(u)

then[
a1 0
m1 b1

] [
A 0
M rB(b)

]
=[

a1A 0
m1A+ b1M b1rB(b)

]
=

[
0 0
0 0

]
gives us a1A = 0; that is a1 = 0 , b1rB(b) = 0;
that is b1 ∈ lBrB(b) and
m1A + b1M = 0 imply that m1A =
0 giving m1 = 0 and b1M =
0 giving b1 ∈ lB(M). Therefore

lr(u) =

[
0 0
0 lB(M) ∩ lBrB(b)

]
and

Tu =

[
0 0
0 Bb

]
. Since lr(u) = Tu we

have lB(M) ∩ lBrB(b) = Bb. Also since
rB(b) is maximal ideal of B, we have
J(B) ⊆ rB(b) hence lBrB(b) ⊆ lB(J(B)),
by assumption lB(J(B)) = Soc(BB) and
so lBrB(b) ⊆ Soc(BB) ⊆ lB(M). Hence
lB(M) ∩ lBrB(b) = lBrB(b) = Bb proving that
B is right mininjective.

Definition III.3. A ring R is called strong right
mininjective if lR(I) = 0 for every maximal right
ideal I of R.

Since every simple right ideal of R is of the
form aR with rR(a) maximal right ideal of R.
lRrR(a) = Ra if R is right mininjective. It follows
that R is strong right mininjective if lRrR(a) = 0
implies that Ra = 0; that is a = 0. This means
that R has no simple right ideals so Socle(RR)=0.
That is a ring R is strong right mininjective ⇔
Socle(RR) = 0. R is strong right mininjective ⇔
the dual of every simple right R-module is zero.

Corollary III.1. Let T =

[
A 0
M B

]
. Then T is

strong right mininjective if and only if A is strong
right mininjective, Soc(MA) = 0 and Soc(LB) = 0
where L = lB(M).

Proof. By Corollary II.1 soc(TT ) =[
soc(AA) 0
soc(MA) soc(LB)

]
, L = lB(M) then

T is strong right mininjective if and only if
soc(TT )=0.
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Lemma III.4. SocTT is an essential right ideal of
T if and only if the following are valid: (i) SocAA

is essential in AA.
(ii) SocMA is essential in MA.
(iii) If lB(M) 6= 0, Soc(lB(M)B) is essential in
lB(M)B .

Proof. By Corollary II.1 we have SocTT =[
Soc(AA) 0
Soc(MA) soc(LB)

]
where LB = lB(M).

Assume that Soc(TT ) is essential in TT . For any
α 6= 0 in A and m 6= 0 in M we have[
a 0
0 0

]
T =

[
aA 0
0 0

]
and

[
0 0
m 0

]
T =[

0 0
mA 0

]
. From[

a 0
0 0

]
T ∩ Soc(TT ) 6= 0 and

[
0 0
m 0

]
T ∩

Soc(TT ) 6= 0 we immediately see that aA ∩
Soc(AA) 6= 0 and mA ∩ Soc(MA) 6= 0. Also if

0 6= b ∈ LB ; we have
[

0 0
0 b

]
T ∩ Soc(TT ) 6= 0

and so we get bB ∩ Soc(LB) 6= 0. These yields
(i),(ii) and (iii).

Conversely, assume (i),(ii)and (iii). Since any

principal right ideal
[
a 0
m b

]
T can be written

as
[
a
m

]
A+

[
0 0
bM bB

]
. Because of Lemma

II.1, to show that SocTT is essential in TT it

suffices to show that
[
a
m

]
A ∩ SocTT 6= 0 and[

0 0
bM bB

]
∩ SocTT 6= 0 whenever (a,m) 6=

(0, 0) ∈ A⊕M or b 6= 0 in B. Conditions (i) and

(ii) clearly imply
[
a
m

]
A∩SocTT 6= 0 whenever

(a,m) 6= (0, 0) in A⊕M . If bM 6= 0 we have[
0 0
bM bB

]
∩ SocTT ⊇

[
0 0
bM 0

]
∩[

0 0
Soc(MA) 0

]
=

[
0 0

bM ∩ Soc(MA) 0

]
6= 0. If on the other

hand bM = 0 then 0 6= b ∈ LB and
[

0 0
0 bB

]
∩

Soc(TT ) ⊇
[

0 0
0 bB ∩ Soc(LB)

]
6= 0.

Corollary III.2. The ordinary triangular matrix

ring
[
A 0
A A

]
is strong right mininjective ⇔ A

is so.

In this section we will see some properties pass-
ing over to triangular matrix ring. We will prove
that certain properties like having n in the stable

range, being a potent ring or being a clean ring
all pass over to triangular matrix rings. Throughout
this section T will denote the triangular matrix ring[
A 0
M B

]
. Let R be a ring and n an integer

≥ 1. Recall that a row (a1, a2...an) of elements
of R is called a right unimodular n row if there
exists elements λi ∈ R for 1 ≤ i ≤ n satisfying
n∑

i=1

aiλi = 1. Let Ur(n,R) denote the set of

right unimodular n rows over R. Recall that n
is said to be in the stable range of R if for
any (a1, ...., an+1) ∈ Ur(n + 1, R) we can find
elements ci ∈ R for 1 ≤ i ≤ n satisfying the
condition that
(a1 + an+1c1, ..., an + an+1cn) ∈ Ur(n,R).

Lemma III.5. Let ti =

[
ai O
mi bi

]
∈ T for 1 ≤

i ≤ n. Then
(t1, ..., tn) ∈ Ur(n, T ) if and only if (a1, ..., an) ∈
Ur(n,A) and
(b1, ..., bn) ∈ Ur(n,B).

Proof. Assume that (t1, ..., tn) ∈ Ur(n, T ). Then
there exists
si =

[
λi O
ωi µi

]
∈ T for 1 ≤ i ≤ n satisfy-

ing
n∑

i=1

tisi = 1 in T . This in particular yields

n∑
i=1

aiλi = 1 in A and
n∑

i=1

biµi = 1 in B. Hence

(a1, ..., an) ∈ Ur(n,A) and (b1, ..., bn) ∈
Ur(n,B).
conversely, assume that (a1, ..., an) ∈ Ur(n,A)
and (b1, ..., bn) ∈ Ur(n,B). To show that
(t1, ..., tn) ∈ Ur(n, T ). let λi ∈ A and µi ∈ B
satisfy
n∑

i=1

aiλi = 1 and
n∑

i=1

biµi = 1. Now to find

si =

[
λi 0
ωi µi

]
such that

n∑
i=1

tisi = 1 in T .

Let v =
n∑

i=1

miλi define ωi = −µiv, then

n∑
i=1

biωi = −
n∑

i=1

bi(µiv) = −
n∑

i=1

biµiv = −v

and define si =

[
λi 0
ωi µi

]
then simple checking

shows that
n∑

i=1

tisi = 1 in T. Hence (t1, ..., tn) ∈

Ur(n, T ).
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Theorem III.6. n is in the stable range of T if
and only if n is in the stable range of A and n is
in the stable range of B.

Proof. Assume n is in the stable range of T . Let
(a1, ..., an+1) ∈ Ur(n+ 1, A) and (b1, ..., bn+1) ∈
Ur(n + 1, B). Let ti =

[
ai 0
0 bi

]
∈ T , since

n is in the stable range of T there exists qi =[
ci 0
ui di

]
∈ T for 1 ≤ i ≤ n such that (t1 +

tn+1q1, t2 + tn+1q2, ..., tn + tn+1qn) ∈ Ur(n, T ).
By Lemma III.5 (a1 +an+1c1, ..., an +an+1cn) ∈
Ur(n,A) and
(b1 + bn+1d1, ..., bn + bn+1dn) ∈ Ur(n,B), hence
n is in the stable range of both A and B.
Conversely, assume that n is in the stable range of
both A and B. Let
ti =

[
ai 0
mi bi

]
∈ T for 1 ≤ i ≤ n + 1, satisfy

(t1, ..., tn+1) ∈ Ur(n + 1, T ); that is there exists

si =

[
λi 0
ωi µi

]
for 1 ≤ i ≤ n+ 1 in T such that

n+1∑
i=1

tisi = 1 in T .

From Lemma III.5. we see that
n+1∑
i=1

aiλi = 1 in

A and
n+1∑
i=1

biµi = 1 in B. That is (a1, ..., an+1) ∈

Ur(n + 1, A) and (b1, ..., bn+1) ∈ Ur(n + 1, B).
Since n is in the stable range of both A,B we get
elements ci ∈ A, di ∈ B for
1 ≤ i ≤ n satisfying the condition that (a1 +
an+1c1, ..., an +an+1cn) is in Ur(n,A) and (b1 +
bn+1d1, ..., bn + bn+1dn) is in Ur(n,B). Let qi =[
ci 0
0 di

]
∈ T for 1 ≤ i ≤ n, then ti +

tn+1qi =

[
ai + an+1ci 0
mi +mn+1ci bi + bn+1di

]
. From

Lemma III.5 we see that (t1 + tn+1q1, ..., tn +
tn+1qn) ∈ Ur(n, T ). Hence n is in the stable range
of T .

A ring R is said to be Clean [10] if every element
in R is the sum of a unit and an idempotent. If
θ : R→ S is a surjective ring homomorphism and
R is clean, then so is S.

Proposition III.2. T is clean if and only if A and
B are clean.

Proof. Since A and B are factor rings of T , to
prove the proposition we have only to show that
if A and B are clean then so is T . Let u =

[
a 0
m b

]
∈ T .

Then a = e+α, b = f+β where, e2 = e ∈ A, f2 =
f ∈ B,α is a unit in A and β is a unit in B. Then

u =

[
e 0
0 f

]
+

[
α 0
m β

]
with

[
e 0
0 f

]
an

idempotent and
[
α 0
m β

]
a unit in T .

Recall that a ring R is said to be potent if idem-
potents mod J(R) can be lifted and every right
(equivalently left) ideal L of R with L ( J(R)
contains a non zero idempotent.

Theorem III.7. T is a potent ring if and only if
A and B are potent rings.

Proof. From Corollaries II.1, II.2 we have J(T ) =[
J(A) 0
M J(B)

]
and idempotents mod J(T ) can

be lifted in T if and only if idempotents mod
J(A) can be lifted in A and idempotents mod
J(B) can be lifted in B. Assume T is potent.
Let I be a right ideal of A not contained in

J(A). Then Ĩ =

[
I 0
0 0

]
is a right ideal of

T not contained in J(T ). Hence there exists an

element 0 6= e ∈ I with
[
e 0
0 0

] [
e 0
0 0

]
=[

e 0
0 0

]
in T , equivalently e2 = e in A. Let

K be a right ideal of B with K * J(B).

Then K̃ =

[
0 0

KM K

]
is a right ideal of T

with K̃ * J(T ). Hence there exists an element[
0 0
m f

]
∈ K̃ with

[
0 0
m f

]
6=
[

0 0
0 0

]
and[

0 0
m f

] [
0 0
m f

]
=

[
0 0
m f

]
. But since[

0 0
m f

] [
0 0
m f

]
=[

0 0
fm f2

]
, we get f2 = f and fm = m. From[

0 0
m f

]
6=
[

0 0
0 0

]
, we see that either f 6= 0

or m 6= 0. From fm = m we conclude that f 6= 0.
Thus 0 6= f ∈ K and f2 = f in B. This proves
implication T potent ⇒ A and B are potent.

Now assume that A and B are potent rings. Let
Ĩ be a right ideal of T with Ĩ * J(T ). Then there

exists an element
[
a 0
m b

]
∈ Ĩ with[

a 0
m b

]
/∈ J(T ). This means that either a /∈

J(A) or b /∈ J(B). To show that Ĩ contains a
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nonzero idempotent it suffices to show that[
a 0
m b

]
T =

[
a
m

]
A +

[
0 0
bM bB

]
con-

tains a non zero idempotent. If b /∈ J(B) there
exists a non zero idempotent f ∈ bB and[

0 0
0 f

]
is a nonzero idempotent in uT where

u =

[
a 0
m b

]
. Suppose a /∈ J(A). Then there

exists a nonzero idempotent e in A of the form
aλ for some λ ∈ A. Then aλe = e.e = e 6= 0.

The element
[

e 0
mλe 0

]
=

[
aλe 0
mλe 0

]
is

in
[
a
m

]
A, hence

[
e 0

mλe 0

]
∈ uT . Also[

e 0
mλe 0

] [
e 0

mλe 0

]
=

[
e 0

mλe 0

]
. Thus[

e 0
mλe 0

]
is a nonzero idempotent in uT . This

proves that T is potent.

Definition III.4. An element u of a ring R is said
to be right repetitive if for each finitely generated

right ideal I of R, the right ideal
∑
n≥0

unI is finitely

generated; equivalently there exists an integer k ≥

1 (depending on u and I) satisfying ukI ⊆
k−1∑
n=0

unI

[6].
R itself is said to be right repetitive if every

element in R is right repetitive. The importance of
right repetitive rings arises from the fact that over
such rings all cyclic right modules are hopfian. Re-
call that a module N is hopfian if every surjective
endomorphism f : N → N is automatically an
isomorphism.

Lemma III.6. Let θ : R→ S be a surjective ring
homomorphism. If R is right repetitive so is S.

Proof. Let K be a finitely generated right ideal of
S and v ∈ S. By lifting a finite set of generators
of S to R we get a finitely generated right ideal
I of R satisfying θ(I) = K. Let u ∈ R satisfying
θ(u) = v. Then since R is right repetitive and I
is finitely generated there exists an integer k ≥ 1

with ukI ⊆
k−1∑
n=0

unI . From θ(unI) = vnK we see

that vkK ⊆
k−1∑
n=0

vnK. Hence S is right repetitive.

Theorem III.8. Let T =

[
A 0
M B

]
.

(1) If T is right repetitive so are A and B.

(2) If M = 0 or MA is simple then the right repeti-
tiveness of A and B implies the right repetitiveness
of T .

Proof. (1) If a ∈ A and I be finitely generated
right ideal of A then

u =

[
a 0
0 0

]
∈ T and Ĩ =

[
I 0
0 0

]
is finitely

generated right ideal of T . Since T is right repeti-

tive there exists K ≥ 1 such that uk Ĩ ⊆
k−1∑
n=0

unĨ .

We have u =

[
a 0
0 0

]
uk Ĩ =

[
akI 0
0 0

]
and[

akI 0
0 0

]
⊆

k−1∑
n=0

[
anI 0
0 0

]
which implies

that
[
akI 0
0 0

]
⊆


k−1∑
n=0

anI 0

M B

 . Therefore

akI ⊆
k−1∑
n=0

anI; that is A is right repetitive.

Now let b ∈ B, J be any finitely right ideal of

B then v =

[
0 0
0 b

]
∈ T and J̃ =

[
0 0
JM J

]
is finitely generated right ideal of T . Since T is
right repetitive there exists k ≥ 1 such that vkJ̃ ⊆
k−1∑
n=0

vnJ̃ ; that is
[

0 0
0 bk

] [
0 0
JM J

]
⊆

k−1∑
n=0

[
0 0
0 bn

] [
0 0
JM J

]
which implies that[

0 0
bkJM bkJ

]
⊆

k−1∑
n=0

[
0 0

bnJM bnJ

]
; that is

bkJ ⊆
k−1∑
n=0

bnJ . Therefore B is right repetitive.

(2) Assume that either M = 0 or MA is simple and
then A and B are right repetitive. To show that T
is right repetitive we need to show that any element
of T acts repetitively on any principal right ideal

of T . Let Ĩ =

[
a 0
m b

]
T and u =

[
α 0
y β

]
be any element of T . We have

Ĩ =

[
a
m

]
A +

[
0 0
bM bB

]
from Lemma II.1.

Also u =

[
α 0
y β

]
, u2 =

[
α 0
y β

] [
α 0
y β

]
=

[
α2 0

yα+ βy β2

]
u3 =

[
α3 0

yα2 + βyα+ β2y β3

]
u4 =

[
α4 0

yα3 + βyα2 + β2yα+ β3y β4

]
so in general uk =
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[
αk 0

yαk−1 + βyαk−2 + ..+ βk−1y βk

]
and

uk Ĩ = uk
[
a 0
m b

]
T =[
αka 0

yαk−1a+ βyαk−2a+ ...+ βk−1ya+ βkm βkb

]
T

=

[
αka

yαk−1a+ βyαk−2a+ ...+ βk−1ya+ βkm

]
A

+

[
0 0

βkbM βkbB

]
. Thus a typical element of

uk Ĩ is of the following form :[
αkaλ 0

(yαk−1a+ βyαk−2a+ ...+ βk−1ya+ βkm)λ+ βkbx βkbµ

]
,

where λ ∈ A, x ∈ M and mu ∈ B. Thus u acts
repetitively on Ĩ ⇔ for some integer k ≥ 2 the
following three conditions are valid:
(1) αk+1aA ⊆ aA+ αaA+ ...+ αkaA
(2) βk+1bB ⊆ bB + βbB + ...+ βkbB
(3) (yαka+ βyαk−1a+ ...+ βkya+ βk+1m)A+
βk+1bM ⊆ mA + bM + (ya + βm)A + βbM +
k−1∑
i=1

(yαia+ βyαi−1a+ ...+ βiya+ βi+1m)A+

k−1∑
i=1

βi+1bM .

{Since uk+1Ĩ ⊆
k∑

i=0

uiĨ = Ĩ + uĨ + ...+ uk Ĩ

Ĩ =

[
a
m

]
A+

[
0 0
bM bB

]
uĨ =

[
αa

ya+ βm

]
A+

[
0 0

βbM βbB

]
uk Ĩ =[

αka
yαk−1a+ βyαk−2a+ ...+ βk−1ya+ βkm

]
A+[

0 0
βkbM βkbB

]
uk+1Ĩ =[

αk+1a
yαka+ βyαk−1a+ ...+ βkya+ βk+1m

]
A+[

0 0
βk+1bM βk+1bB

]
} Now (1) is equivalent

to saying that α ∈ A acts repetitively on aA, (2)
is equivalent to saying that β ∈ B acts repetitively
on bB, (3) could be written as (3)’
(yαka + βyαk−1a + ... + βkya + βk+1m)A +

βk+1bM ⊆ mA + (ya + βm)A +
k−1∑
i=1

(yαia +

βyαi−1a+ ...+βiya+βi+1m)A+ bM +βbM +

k−1∑
i=1

βi+1bM

When M = 0 this is equivalent to show 0 ⊆ 0

which is clearly true.

If m 6= 0 or bM 6= 0 the right hand side of
(3)’ is whole of M when MA is simple. Hence
(3) is valid in this case. Let m = 0 and bM = 0,
If one of yαia + βyαi−1a + ... + βiya is not 0,
say for i = l then (3)’ is valid with k = l + 1.
If yαia + βyαi−1a + ... + βiya = 0 for all
i ≥ 1 then the L.H.S. of (3)’ is zero, hence (3)’ is
valid. This completes the proof of the theorem.
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